dbPAF Protein Information


Tag Content
dbPAF ID dbPAF-0000838
Uniprot Accession O15055; PER2_HUMAN; A2I2P7; Q4ZG49; Q6DT41; Q9UQ45;
Genbank Protein ID NP_073728.1; XP_005246168.1; XP_006712887.1;
Genbank Nucleotide ID NM_022817.2; XM_005246111.3; XM_006712824.2;
Protein Name Period circadian protein homolog 2
Protein Synonyms/Alias
Gene Name PER2
Gene Synonyms/Alias KIAA0347;
Organism Homo sapiens(Human)
NCBI Taxa ID 9606
Functional Description
(View all)
Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndrome and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. PER1 and PER2 proteins transport CRY1 and CRY2 into the nucleus with appropriate circadian timing, but also contribute directly to repression of clock-controlled target genes through interaction with several classes of RNA-binding proteins, helicases and others transcriptional repressors. PER appears to regulate circadian control of transcription by at least three different modes. First, interacts directly with the CLOCK-ARTNL/BMAL1 at the tail end of the nascent transcript peak to recruit complexes containing the SIN3-HDAC that remodel chromatin to repress transcription. Second, brings H3K9 methyltransferases such as SUV39H1 and SUV39H2 to the E-box elements of the circadian target genes, like PER2 itself or PER1. The recruitment of each repressive modifier to the DNA seems to be very precisely temporally orchestrated by the large PER complex, the deacetylases acting before than the methyltransferases. Additionally, large PER complexes are also recruited to the target genes 3' termination site through interactions with RNA-binding proteins and helicases that may play a role in transcription termination to regulate transcription independently of CLOCK-ARTNL/BMAL1 interactions. Recruitment of large PER complexes to the elongating polymerase at PER and CRY termination sites inhibited SETX action, impeding RNA polymerase II release and thereby repressing transcriptional reinitiation. May propagate clock information to metabolic pathways via the interaction with nuclear receptors. Coactivator of PPARA and corepressor of NR1D1, binds rhythmically at the promoter of nuclear receptors target genes like ARNTL or G6PC. Directly and specifically represses PPARG proadipogenic activity by blocking PPARG recruitment to target promoters and thereby inhibiting transcriptional activation. Required for fatty acid and lipid metabolism, is involved as well in the regulation of circulating insulin levels. Plays an important role in the maintenance of cardiovascular functions through the regulation of NO and vasodilatatory prostaglandins production in aortas. Controls circadian glutamate uptake in synaptic vesicles through the regulation of VGLUT1 expression. May also be involved in the regulation of inflammatory processes. Represses the CLOCK-ARNTL/BMAL1 induced transcription of BHLHE40/DEC1 and ATF4. Negatively regulates the formation of the TIMELESS-CRY1 complex by competing with TIMELESS for binding to CRY1.
Phosphorylation Sites
dbPAF PTMs: 27 (View all)
PositionPeptidesSourceReferences ( PMIDs )
88FSLMMAKSEHNPSTScurated26074081
286SHENEIRYHPFRMTPcurated26074081
540SGEQKKKSVTEMQTNcurated25627689
618ANVPALRSSDKRKATPHOSIDA;curated21081558; 20068231
627DKRKATVSPGPHAGEPhosphoSitePlus;curated22135298; 25627689
645PSRVNSRTGVGTHLTPhosphoSitePlus22135298
649NSRTGVGTHLTSLALPhosphoSitePlus22135298
652TGVGTHLTSLALPGKPhosphoSitePlus22135298
653GVGTHLTSLALPGKAPhosphoSitePlus22135298
662ALPGKAESVASLTSQdbPTM 3.0;Phospho.ELM 9.0;HPRD 9;PhosphoSitePlus;UniProt;curated11232563; 16381945; 23193290; 11475410; 17218255; 21324900;
665GKAESVASLTSQCSYdbPTM 3.0;HPRD 9;PhosphoSitePlus21324900; 16381945; 23193290; 17218255; 18988627; 22135298
668ESVASLTSQCSYSSTdbPTM 3.0;HPRD 9;PhosphoSitePlus21324900; 16381945; 23193290; 17218255; 18988627; 22135298
671ASLTSQCSYSSTIVHdbPTM 3.0;HPRD 9;PhosphoSitePlus17218255; 16381945; 23193290; 18988627; 22135298
674TSQCSYSSTIVHVGDdbPTM 3.0;HPRD 917218255; 16381945; 23193290; 18988627
696EMVEDAASGPESLDCcurated23898821
771ERSKGQPSERTAPGLcurated23898821
774KGQPSERTAPGLRNTcurated23898821
781TAPGLRNTSGIDSPWPhosphoSitePlus22135298
782APGLRNTSGIDSPWKPhosphoSitePlus22135298
786RNTSGIDSPWKKTGKPhosphoSitePlus;curated22135298; 23898821
Sequence
(Fasta)
MNGYAEFPPS PSNPTKEPVE PQPSQVPLQE DVDMSSGSSG HETNENCSTG RDSQGSDCDD 60
SGKELGMLVE PPDARQSPDT FSLMMAKSEH NPSTSGCSSD QSSKVDTHKE LIKTLKELKV 120
HLPADKKAKG KASTLATLKY ALRSVKQVKA NEEYYQLLMS SEGHPCGADV PSYTVEEMES 180
VTSEHIVKNA DMFAVAVSLV SGKILYISDQ VASIFHCKRD AFSDAKFVEF LAPHDVGVFH 240
SFTSPYKLPL WSMCSGADSF TQECMEEKSF FCRVSVRKSH ENEIRYHPFR MTPYLVKVRD 300
QQGAESQLCC LLLAERVHSG YEAPRIPPEK RIFTTTHTPN CLFQDVDERA VPLLGYLPQD 360
LIETPVLVQL HPSDRPLMLA IHKKILQSGG QPFDYSPIRF RARNGEYITL DTSWSSFINP 420
WSRKISFIIG RHKVRVGPLN EDVFAAHPCT EEKALHPSIQ ELTEQIHRLL LQPVPHSGSS 480
GYGSLGSNGS HEHLMSQTSS SDSNGHEDSR RRRAEICKNG NKTKNRSHYS HESGEQKKKS 540
VTEMQTNPPA EKKAVPAMEK DSLGVSFPEE LACKNQPTCS YQQISCLDSV IRYLESCNEA 600
ATLKRKCEFP ANVPALRSSD KRKATVSPGP HAGEAEPPSR VNSRTGVGTH LTSLALPGKA 660
ESVASLTSQC SYSSTIVHVG DKKPQPELEM VEDAASGPES LDCLAGPALA CGLSQEKEPF 720
KKLGLTKEVL AAHTQKEEQS FLQKFKEIRK LSIFQSHCHY YLQERSKGQP SERTAPGLRN 780
TSGIDSPWKK TGKNRKLKSK RVKPRDSSES TGSGGPVSAR PPLVGLNATA WSPSDTSQSS 840
CPAVPFPAPV PAAYSLPVFP APGTVAAPPA PPHASFTVPA VPVDLQHQFA VQPPPFPAPL 900
APVMAFMLPS YSFPSGTPNL PQAFFPSQPQ FPSHPTLTSE MASASQPEFP SRTSIPRQPC 960
ACPATRATPP SAMGRASPPL FQSRSSSPLQ LNLLQLEEAP EGGTGAMGTT GATETAAVGA 1020
DCKPGTSRDQ QPKAPLTRDE PSDTQNSDAL STSSGLLNLL LNEDLCSASG SAASESLGSG 1080
SLGCDASPSG AGSSDTSHTS KYFGSIDSSE NNHKAKMNTG MEESEHFIKC VLQDPIWLLM 1140
ADADSSVMMT YQLPSRNLEA VLKEDREKLK LLQKLQPRFT ESQKQELREV HQWMQTGGLP 1200
AAIDVAECVY CENKEKGNIC IPYEEDIPSL GLSEVSDTKE DENGSPLNHR IEEQT 1256
Keyword

KW-0007--Acetylation
KW-0025--Alternative splicing
KW-0090--Biological rhythms
KW-0181--Complete proteome
KW-0963--Cytoplasm
KW-0225--Disease mutation
KW-0539--Nucleus
KW-0597--Phosphoprotein
KW-0621--Polymorphism
KW-1185--Reference proteome
KW-0677--Repeat
KW-0804--Transcription
KW-0805--Transcription regulation
KW-0832--Ubl conjugation

Interpro

IPR001610--PAC
IPR000014--PAS
IPR013655--PAS_fold_3
IPR022728--Period_circadian-like_C

PROSITE

PS50112--PAS

Pfam

PF08447--PAS_3
PF12114--Period_C

Gene Ontology

GO:0005737--C:cytoplasm
GO:0005730--C:nucleolus
GO:0005654--C:nucleoplasm
GO:0005634--C:nucleus
GO:0048471--C:perinuclear region of cytoplasm
GO:0003713--F:transcription coactivator activity
GO:0000989--F:transcription factor activity, transcription factor binding
GO:0000976--F:transcription regulatory region sequence-specific DNA binding
GO:0043130--F:ubiquitin binding
GO:0032922--P:circadian regulation of gene expression
GO:0097167--P:circadian regulation of translation
GO:0007623--P:circadian rhythm
GO:0006631--P:fatty acid metabolic process
GO:0006094--P:gluconeogenesis
GO:0005978--P:glycogen biosynthetic process
GO:0070932--P:histone H3 deacetylation
GO:0019249--P:lactate biosynthetic process
GO:0042754--P:negative regulation of circadian rhythm
GO:0070345--P:negative regulation of fat cell proliferation
GO:0031397--P:negative regulation of protein ubiquitination
GO:0000122--P:negative regulation of transcription from RNA polymerase II promoter
GO:2000678--P:negative regulation of transcription regulatory region DNA binding
GO:0045892--P:negative regulation of transcription, DNA-templated
GO:0051726--P:regulation of cell cycle
GO:0042752--P:regulation of circadian rhythm
GO:0051946--P:regulation of glutamate uptake involved in transmission of nerve impulse
GO:0050796--P:regulation of insulin secretion
GO:0050767--P:regulation of neurogenesis
GO:0019229--P:regulation of vasoconstriction
GO:0002931--P:response to ischemia
GO:0006351--P:transcription, DNA-templated
GO:0050872--P:white fat cell differentiation